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Abstract

The least absolute deviations criterion, or the fL norm, is frequently used for approx-
imation where the data may contain outliers or 'wild points'. One of the most popular
methods for solving the least absolute deviations data fitting problem is the Barrodale
and Roberts (BR) algorithm (1973), which is based on linear programming techniques
and the use of a modified simplex method [1]. This algorithm is particularly efficient.
However, since it is based upon the simplex method it can be susceptible to the accu-
mulation of unrecoverable rounding errors caused by using an inappropriate pivot. In
this paper we shall show how we can extend a numerically stable form of the simplex
method to the special case of f, approximation whilst still maintaining the efficiency of
the Barrodale and Roberts algorithm. This extension is achieved by using the el char-
acterization to rebuild the relevant parts of the simplex tableau at each iteration. The
advantage of this approach is demonstrated most effectively when the observation matrix
of the approximation problem is sparse, as in the case when using compactly supported
basis functions such as B-splines. Under these circumstances the new method is consid-
erably more efficient than the Barrodale and Roberts algorithm as well as being more
robust.

1 Introduction

Given a set of m data points { (xi, yi)}!nl, the tL, or least absolute deviations curve-fitting
problem seeks c E R' to solve the optimization problem

min IlY - Ac]Il = j - E ai,jcj r,(1)

i=1 j=l i=1

where A is an m x n observation matrix, and ri denotes the residual of the ith point.
Another way of stating the tl, or least absolute deviations curve-fitting problem, is by

the characterization theory of an fL solution [8], which may be given in different forms.
The following is perhaps the most commonly used.
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A vector c E WR solves the minimization problem (1.1) if and only if there exist
A E E7 such that

ATA =0 With f IAil < 1, for i EZ, (1.2)
Ai = sign(ri), for i V Z,

where Z represents the set of indices for which ri = 0.

One of the popular methods designed for solving the 4, approximation problem is the
Barrodale and Roberts (BR) algorithm. It replaces the unconstrained variables c and r
in (1.1) by nonnegative variables c+, c-, u and v, and considers the linear programming
problem

min eTu + eTv
C

subject to Ac+-Ac-+u-v =y, (1.3)
C+ c-, U, v > 0.

Much of the reason for the popularity of the BR algorithm is that it exploits the
characteristics of the 4l approximation in order to solve the problem in a more efficient
manner than the general simplex approach. However, it is a simplex based method, and
so it is susceptible to numerical instabilities caused by using inappropriate pivots. The
new method presented here uses matrix factorization instead of simplex pivoting. This
approach allows numerically stable updates to be made, thus avoiding the unnecessary
build-up of rounding errors. This method is particularly efficient when the observation
matrix is large and sparse [5].

Bartels [2] and Gill and Murray [4] presented methods that concentrate on avoiding
the inherent instability of the simplex method. However, these methods are designed for
a general linear programming problem and if we were to employ these techniques for the
special case of the f4 problem, the storage requirements and computational workload of
the method would be unnecessarily large compared to those of the highly efficient BR
algorithm.

The t4 problem is, in essence, an interpolation problem. The aim of any iterative
procedure for the t, problem is to find an optimal set of interpolation points. Indeed,
this is how the BR algorithm solves the 4l problem. It begins with all coefficients, c,
set to zero (being non-basic variables), and during each iteration of stage one, one of
the residuals, ri, becomes non-basic by making the corresponding point an interpolation
point (i.e., the coefficients are altered so that ri = 0). At the end of stage one, the current
estimate interpolates n distinct points. During stage two, the interpolation points are
exchanged one at a time with a non-interpolation point until an optimal solution is
achieved.

In fact, the new algorithm is effectively identical to the BR algorithm in the sense that
we use exactly the same pivoting strategy. However, we start with a predetermined set
of interpolation points and do not store the simplex tableau directly. In each iteration,
we only reconstruct the parts of the simplex tableau that are needed by the more stable
approach employed.
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2 A more stable computational approach

The linear programming presentation of a least absolute deviations curve-fitting problem
is given in (1.3). It is a standard linear programming problem of dimension m x (2m+2n).
The robust approaches of Bartels and Gill and Murray can be applied to solve it. They
involve the factorization of an m x m matrix. On the other hand, the BR algorithm only
deals with an m x n matrix in each iteration, if m > n, the direct usage of these stable
approaches is less efficient. We shall show next that the factorization of an n x n matrix
is all that is required at each iteration.

We split the data points based on the set interpolation Z, and let Az, yz, uz and
vz be the counterparts of A, y, u and v in (1.3) corresponding to the set Z. Their
complementary matrix and vectors are denoted by AZ and Yz, iuz and vfZ, so that Az
and Az comprise A, etc., problem (1.3) can be expressed as

min eT (uz + iiz) + eT(vZ + iiZ)
C

subject to Azc+ - Azc- + uz - vz = yz,
Azc -Azc + iiz-U = (2.1)

C+,C-,UZUZ,VZ,VZ >Ž0.

Since the coefficients for c3 are just the negative of the coefficients for c+, j = 1, 2,. n ,

it is possible to suppress cj and let c represent the unconstrained variable. The initial
simplex tableau associated with problem (2.1) can be constructed in matrix form by
Table 1, where ek, k = m,n, m - n, are k x 1 vectors with all components equal to one.

BV c uz uz vz VZ r

uz Az I 0 -I 0 Yz

u2z AZ 0 I 0 -I YZ

emo o -2en -2ern e_ (/2

TAB. 1. The initial simplex tableau of the t, fitting problem.

As we know, the simplex method is an iterative procedure in which each iteration is
characterized by specifying which m of 2m + n variables are basic. For the fi approxima-
tion, we are only concerned with those vertices which are formed by a set of interpolation
points. For n interpolation points, the basic variables consist of n of the coefficient para-
meters c and m - n of the parameters iiz corresponding to the non-interpolation points.

Let B be the mn x mn basis matrix whose columns consist of the mn columns associated
with the basic variables. Then
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BV U, r

c Az1 Az'yz

""z -JAzA-, rz

Z M- m (AzA- ) - eT

- n~ em-nrz

TAB. 2. The condensed simplex tableau associated with a set of interpolation
points.

Az I

It is readily verified that the inverse of B can be written in the form of (2.3) as long
as Az is invertible.

( A•' O0)
AZ 11 023

B-1 - AzAZ 1 1 23

Equation(2.3) shows that the explicit inverse computation of an m x m matrix in the
form of (2.2) can be achieved by dealing with an inverse of an n x n matrix, and in
general, n <K m.

To make the m non-basic variables become basic, we multiply the whole simplex
tableau by B-1, and omit the identity and zero matrices. Then new simplex tableau is
given in Table 2.

An arbitrary choice of the interpolation set Z may cause some of the values in the
right hand side column to become negative. Although it is permissible for the coefficient
parameters c to be negative, for those rows having negative residuals FZ, we restore
feasibility by exchanging the corresponding iuz for vUz. This exchanging can be made by
subtracting twice those rows from the objective row and changing the sign of the original
rows [1].

Such an exchange process can be expressed in matrix terms by introducing a sign
vector

Az = sign(Fz).

Let AzS represent the matrix which is obtained by multiplying those rows of Az asso-
ciated with negative residuals by -1,

Az, = diag(Az)Az.
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BV u, r

c Az 1  Az1yz

uZ -AzAz' ITZl
Z ý -T(A4zA-1) Te T

TAB. 3. Restoration of feasibility of the simplex tableau.

The simplex tableau after restoring feasibility is shown in Table 3.
The point to be removed from Z is decided by the values of the objective row. Each

time the maximum value of the objective row (including the suppressed columns) is
chosen, we let the index of this element be k. In order to choose which new point is
to join the set Z, we compute the value of the pivotal column, the kth column in the
simplex tableau. Since the simplex tableau is in the form of

I ], A-1,

the kth column can be obtained by using Az, and the kth column of Az'.
The BR algorithm pivoting strategy is adopted to decide which new point is to be

added to the interpolation set, when a new set of indices Z is generated. We repeat the
process in an iterative manner until the optimal solution is achieved.

Table 3 is in fact identical to the simplex tableau of the BR algorithm in stage 2.
The difference here is that the BR algorithm is implemented by a simplex pivoting
approach, while the transformation of the simplex tableau in the form of Table 3 can be
accomplished in a numerically more stable manner.

3 The improved method

The improved method starts with a predetermined interpolation set Z, the minimum
requirement for Z being that it forms a well-behaved matrix Az. For B-spline basis func-
tions, we can choose any set of points satisfying the Schoenberg-Whitney condition [6].
For a Chebyshev polynomial basis, points close to the n Chebyshev zeros can be regarded
as the initial interpolation set. In other cases, we can choose points approximate to them
or even uniformly distributed.

If we denote the set of Ai, i E Z, as Az, we can rewrite the characterization equa-
tion (1.2) as

ATZ Az-Tz, (3.1)

and Az can be obtained mathematically from
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Az = -(A')-(AzAz). (3.2)

Table 3 shows that the objective row can be computed as

Objective row = -(AXT z)A-' - eT. (3.3)

Thus, using (3.2) we conclude that

Objective row = AT - e.T (3.4)

We know that at the f, solution all the values in the objective row are in the range
[-2, 0], and also IAI < 1. This latter result can be explained in terms of the former by
the relationship (3.4).

(3.4) is useful because it can be used to verify whether an interpolation set forms an
optimal solution, or to compute A from the values of the objective row. We use it to
compute the values of the objective row.

The improved method can be summarized as follows;

(1) Choose an initial set of interpolation points and form the'set Z.

(2) Construct Az, yz and their counterpart Az, Yz accordingly.
(3) Solve the equation AZc = yz for c, and compute

Fz = yz -A-zc, and z =sign(Fz).

(4) Obtain the values of AZ from the equation

TAZ= X1Tz. (3.5)

(5) If IAzI < 1 hold, the current solution is optimal, and the algorithm terminates.
Otherwise, continue.

(6) Obtain the objective row of the BR simplex tableau from

objective row A - enW

(7) Examine the values of the objective row; the point associated with the maximum
value of the objective row is chosen to leave the set Z.

(8) Decide the point to add by the BR pivoting strategy. Obtain a new set of indices
Z, and repeat from step 2.

4 Practical considerations and application to the fL spline ap-

proximation

The robustness of the above algorithm stems from the reliable updating of the relevant
parts of the simplex tableau in each iteration. The major computational work is obtaining
(explicitly or implicitly) the inverse of an n x n matrix AZ. It can be calculated and
stored explicitly by using an LU or QR factorization, or preferably it can be expressed as
a product of factors. Since Az differs from its predecessor by only one row, savings can
be made by reusing results from the previous step. Necessary material is available [4, 7]
regarding the stable implementation of this row updating procedure.
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m = 512 Numbers of iterations Execution Time (seconds)

q = New BR New BR

44 57 125 1.6 14.7
49 75 111 2.2 13.4
54 71 134 2.4 20.2
59 83 156 3.0 26.8
64 78 160 3.1 32.'
69 88 194 4.0 42.4
74 75 165 3.7 36.0
79 87 189 4.8 48.1

TAB. 4. The number of iterations and execution time taken by the algorithm of
this paper and the Barrodale and Roberts algorithm for a set of 512 response data
points provided by the National Physical Laboratory.

Sparsity almost always is more important than matrix dimension. Additional savings
can be made if the observation matrix A is sparse or structured. Approximation using
a B-spline basis often occurs in practical applications. In such cases, A is block banded,
and Az can be triangularized using O(n) flops [3]. Similarly, the sparsity of A can be
exploited to compute other relevant parts of the simplex tableau efficiently.

We have applied our method to solve the least absolute deviations curve-fitting prob-
lems by B-splines using various numbers of interior knots. All software was written in
MATLAB and implemented on a Sun Workstation. The initial interpolation points are
chosen to be those points corresponding to the maximum value in each column of the
observation matrix A.

Some of our computational results are reported in Tables 4 and 5. Each table presents
the outcomes of a particular set of data points by the new method and by the BR
algorithm.

All the experimental results exhibit the effectiveness of the improved method on large,
sparse systems. Although these tables show that the improved method is faster than the
BR algorithm, it would be unfair to judge the convergence speed purely based upon
the time taken, since the improved method embodies some MATLAB built-in functions,
while the BR algorithm uses only user-defined functions. However, on average, the new
method requires far fewer iterations than the BR algorithm, and is competitive with the
BR algorithm both in efficiency and accuracy for a structured system.

Further work to be addressed by the authors will involve a definitive implementation
of this algorithm in Fortran, and development of an error analysis for both the improved
method and the BR algorithm.
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m - 1200 Numbers of iterations Execution Time (seconds)

q New BR New BR

50 82 143 4.0 58.7
56 105 165 5.2 85.8
62 113 190 6.1 110.2
68 131 189 7.6 110.4
74 121 223 7.8 157.9
80 132 216 9.2 163.2
86 155 245 11.8 209.8
92 173 252 14.0 241.8
98 153 272 13.6 292.6

TAB. 5. The number of iterations and execution time taken by the algorithm
of this paper and the Barrodale and Roberts algorithm for a set of 1200 data
points, generated by MATLAB command x = linspace(1, 10, 1200)'; y = log(x) +
randn(1200, 1).
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